

The UbiMedic Framework to Support Medical Emergencies by Ubiquitous Computing

Francesco De Mola 1,2 Giacomo Cabri 1 Nicola Muratori 3 Raffaele Quitadamo 1 Franco Zambonelli 2

1 Dipartimento di Ingegneria dell’Informazione – Università di Modena e Reggio Emilia, 41100 Modena, Italy

Email: {cabri.giacomo; demola.francesco; quitadamo.raffaele}@unimore.it
2 Dipartimento di Scienze e Metodi dell’Ingegneria – Università di Modena e Reggio Emilia, 42100 Reggio Emilia, Italy

Email: zambonelli.franco@unimore.it
3 O2 Studio Ingeneri Associati di Muratori Nicola e Rossi Massimiliano, 42020 Albinea, Reggio Emilia, Italy

Email: nicola.muratori@oduestudio.it

Abstract: This paper investigates the feasibility of
employing the Software Agent technology in the highly
dynamic and variable context of healthcare emergency
coordination and decision-support domain. We introduce the
design of an agent-based middleware tailored to the
requirements of such context and propose a framework,
called UbiMedic, for the implementation and deployment of
services, like monitoring services, communications and
remote medical measurements in injured people. From the
analysis of the framework, we are able to identify some of the
major technical requirements it should meet as well as
challenges to be addressed for effective use in commercial
applications. We choose software agents as the key enabling
technology because they offer a single, general framework in
which large-scale, distributed real-time decision-support
applications can be implemented more efficiently.
Keywords: Pervasive computing, multi-agent systems,
context awareness, medical applications.

1. Introduction

Software agent technology provides an attractive and
important model for building large-scale distributed
applications in heterogeneous computing environments. In
particular, a “mobile” agent can be viewed as an autonomous
program that has the ability to transport itself between the
nodes of a network entirely under its own control, carrying
with it the data and the execution state required to resume
execution at the destination host [5]. Due to their autonomous
and active nature, agents offer several benefits over
traditional technologies such as the client-server paradigm, to
enable a mechanism for context-aware decision support.
Being able to encapsulate and transfer the know-how needed
to perform a given task, agents tend to be relatively easy to
customize and can rapidly adapt to changing user
requirements and run-time context. Some of current
pervasive computing research projects combine agenthood
with context awareness [10] and, through this convergence,
mobile agents are capable of embedding light-weight context
reasoning engine and can do preliminary processing in the
original context.

The healthcare field is not only widely distributed and
fragmented but it also exhibits a high degree of
heterogeneity. The current lack of standards across different

institutions and within the same institution prevents it from
using a single software solution to support a cooperative
working environment. The framework presented in this paper
focuses primarily on the domain of medical emergency
management, which is a very information-intensive and
mission-critical one. In such scenarios, the hospital
environment by default is ‘highly mobile’ with caregivers
constantly on the move. In order to meet the varying
information and resource needs of these personnel and yet be
able to support their physical mobility requirements, agent-
oriented computing seems to provide an ideal fit. The
architecture designed in this paper draws inspiration from the
medical domain, representing an emblematic application
scenario that well includes all the seen features. However, it
lays the foundations of a system exploitable in a quite wide
range of contexts, where context-awareness and
heterogeneity are to be faced in a distributed scenario. The
agent paradigm offers a great flexibility, but it comes also
with some major challenges that are infrequent in the client-
server paradigm (e.g., the key issues of security and trust) and
that we try to clearly highlight here.

In this paper, we advocate the pro-active, goal driven and
autonomous nature of software agent technology as a support
to cope with the highly mobile, dynamic and variable context
of medical emergencies. Starting from this consideration, we
propose an agent-based framework, named UbiMedic, as a
helpful abstraction level upon the heterogeneity of medical
emergency scenarios: our basic idea is that every entity
involved in a healthcare environment (e.g., medical
instruments, ambulances, doctors) should be represented by
an agent installed in the platform. Consequently, application
specific services (e.g., remotely driving medical devices,
chatting with doctors, coordinating the overall emergency
operations) are carried out instantiating proper agents and
letting them interact, in a ubiquitous and context-aware
fashion.

The paper opens up showing the main requirements for
emergency (Section 2) and a short report on the state of the
art (Section 3). After some methodological considerations
about agents (Section 4), a global presentation of UbiMedic
is provided in Section 5. A detailed analysis of the
middleware components (Section 7) is followed by a deeper
description of the adopted solutions for the context
management (Section 8). Finally, the paper ends with critical

evaluation and future challenges (Section 9), just before
conclusions (Section 10).

2. Emergency Scenario Requirements

The field of medical emergencies is much more dynamic and
subject to context variability, compared to other telemedicine
fields. It often presents difficulties in communications and
even in physically reaching the place where first aid is
needed. The efficiency of the assistance is an aspect of vital
importance, so that all involved people (from healthcare
workers to drivers) need to communicate, coordinate and
access distributed resources in a very simple and fast way.
Moreover, the scene of the accident is not a priori known and
the employed resources (users and medical devices) must
dynamically organize themselves in a temporary network,
where communication links are established just in time. The
technology to set up the communication links must also be
chosen in real time depending on the particular context.

Therefore, it clearly emerges that the design of a suitable
framework should fulfill some major requirements: first and
foremost, it should provide an adequate degree of dynamicity
and context-awareness, i.e. services should easily self-
configure and adapt to the situation variability. The system
must support the emergency staff to remotely monitor and
coordinate the distributed resources in real time, allowing to
successfully control critical situations and patients' health. In
order to make the users as accustomed and familiar as
possible to the system, portability is another important
requirement to take into account, so that each operator can
seamlessly access the system from her preferred machine. In
addition, the integration of different devices and applications
(interoperability) through open-source technologies and
common standards brings further benefits: thanks to
integration, users can access different services from the same
device; distinct systems can communicate and interact more
smoothly; the existing equipment of the healthcare service
can interoperate with new systems and devices without
headaches due to proprietary solutions and incompatibilities;
efforts and results coming from different experiences can be
unified and integrated to obtain a more and more complete
system. Integration must be intended also in communications,
combining multimedia means and different channels: on the
one hand, users must have the possibility to choose the best
communication mode (textual, vocal, video or combined)
according to their needs; on the other hand, the system must
automatically choose the most efficient communication
technology among the available ones at runtime. Reliability
and fault-tolerance to human errors are, in fact, an
indispensable requirement in such a delicate field as
emergency healthcare.

3. State of the Art

The contemporary scenario of telemedicine applications
presents several technological solutions, spread over different
fields and use cases. However, most of the applications
actually used in health care are often strictly confined to each
particular experience, referred to specific companies and
localities.

For example, let us consider the LIFENET® System by
Medtronic Physio-Control [8], a multinational company that

provides a full range of services and complementary products
that form an emergency cardiac care system. Twelve-lead
electrocardiograms and other vital signs are measured on the
patient through a device called Lifepak 12, a portable
multifunctional monitor and defibrillator. This information
can be transmitted by a Bluetooth connection toward the
doctor's mobile phone or a Lifenet EMS (Emergency Medical
System). This device, belonging to the ambulance equipment,
is an electronic patient care reporting system (ePCR)
implemented on a tablet PC: it can collect, elaborate and
show all the data received from the Lifepak. Moreover, the
same data can be sent by GSM or GPRS from the mobile
phone to a receiving station (Lifenet RS), a PC installed in the
hospital, where a specialist can give a second opinion to the
doctors directly involved in facing the emergency.

This solution, as well as the other commercial products,
has the heavy limitation of being completely closed and
protected by patent rights, so that the system cannot
communicate and integrate with other solutions. The limited
possibility to access several services through a single
integrated system is often underlined by staff in charge of
medical and territorial emergencies. This implies also
efficiency problems in resource employment and integration,
because devices previously in use in a hospital can hardly be
integrated with a new system made by a different company.

Moreover, the information technology is prevalently
applied in telemedicine among hospitals and fixed health care
centers, with the implementation of tele/videoconference and
data transmission systems to ask for second opinions and to
follow patients and treatments at a distance. Instead, the
external scenario of medical and territorial emergencies still
need deeper exploration, having to cope with a much more
variable and complex context.

We can find interesting solutions in the field of eldercare
[1], such as the six-month study conduced at the Honeywell
Laboratories to implement the Independent LifeStyle
Assistant (ILSA) [6]. This is an agent-based monitoring and
supporting system to help elderly people to live more
independently at home, by reducing caregivers load. It
consists of a multi-agent system supporting continuous data
monitoring via home-installed sensors. The collected data are
processed to obtain response planning and machine learning.
In particular, ILSA is implemented over the JADE agent
platform. The project development met serious difficulties
due to the use of agents: the agent paradigm turned out to be
too expensive for a system presenting many centralized
features, so that a simpler design would have been sufficient
and more convenient.

On the other hand, if we consider the CodeBlue [13]
experience, it seems closer to the emergency field, where
distributed features are much more marked: CodeBlue is a
combined hardware and software platform for medical sensor
networks developed in a prototypal version at the Harvard
University. Sensor networks consist of small, low-power and
low-cost devices with limited computational and wireless
communication capabilities. CodeBlue comprises a suite of
protocols and services that let many types of devices
coordinate their activities. Once again agents appeared
unsuitable because of the extremely limited resources of the
devices, where also other traditional approaches (like RPC
and JVM) are not feasible for the same reason. Furthermore,
the medical devices used to test CodeBlue, like a pulse

oximeter and a two-lead electrocardiogram monitor, were
developed ad hoc for the system.

4. The Agent Methodology

Many peculiar issues in the medical domain, in particular
those belonging to the emergency field, can be addressed
very well with the conceptual and methodological tools
provided by the agent technology [9]. Several reasons can
motivate such a choice:
- each component of a multi-agent system can run on a

different machine, fitting very well distributed scenarios,
such as the emergency assistance one;

- thanks to their sociality, agents can interact, coordinate
and cooperate to reach common objectives, reflecting
what the different emergency units must actually do in
their work;

- medical domain problems are intrinsically complex:
multi-agent systems adopt decomposition techniques to
tackle complex problems, partitioning the problem space
into smaller tasks; this helps the system’s designer
focusing on some simpler portions of the system,
deferring global more complex decisions to the last
design stages [2];

- proactivity is another feature of software agents: a
proactive agent is able to select useful actions depending
on the perceived context and the explicit user
intervention; this can facilitate the course of operations
when maximum efficiency is required;

- the agent paradigm provides a model in which
autonomous entities (i.e. agents) are assigned high-level
goals to achieve and they have the reasoning capability
required to take decisions by their own: they interact and
mutually cooperate, keeping at the same time a certain
degree of independence related to internal organization,
information ownership and responsibility level, fitting
very well the different institutions involved during an
emergency (e.g., hospital, fire brigade, civil defence,…);

- finally, agent mobility could be beneficial in external
dynamic contexts, such as those of emergencies and
accidents, where the location is an unpredictable
variable.

UBIMEDIC FRAMEWORK

JADE-LEAP

Java Virtual Machine

Operating System

Application
Services

UBIMEDIC FRAMEWORK

JADE-LEAP

Java Virtual Machine

Operating System

Application
Services

Resource
Explorer Chat Agenda Medical

Device
Resource
Explorer Chat Agenda Medical

Device

Fig. 1. A layered view of the architecture.

The adoption of the multi-agent paradigm, however, comes at
the cost of an increased development effort. On the one hand,

the agent paradigm provides a methodology to deal with the
domain complexity using high-level abstractions, but on the
other hand, the agent adoption itself can make the
development process more expensive. Other experiences
have already highlighted these difficulties [6], but we argue
that an appropriate architecture is mandatory to tackle
medical emergency issues. Taking into account such pros and
cons of agent-based software engineering, we propose a
useful middleware that provides a whole set of facilities for
users and application services: the main prerogative of this
system is that it can integrate even non agent-oriented
services and applications, transparently enriching them with
an “agent wrapper”: through a properly studied architecture
(described in the following Sections), the system can exploit
the benefits of a MAS (Multi-Agent System) and limit the
mentioned development process difficulties.

5. UbiMedic: A Prototype to Support Medical

Emergencies

UbiMedic is a research work aimed at building a distributed
context-aware platform with mobile agents implementing
helpful services for user applications. The middleware is an
agent-based framework and is designed taking into
consideration the importance of portability even on small
devices (e.g., PDAs or other limited user’s terminals). Before
starting the analysis of UbiMedic internals, some concepts
are worth being clarified. UbiMedic is an extensible medical
emergency platform, where many different application
services can be deployed. These services comprise user
application services and built-in services. The former are
implemented by programmers as Java modules, easily
installed into the system by the end users and can implement
custom applications (e.g., special monitoring applications, a
shared agenda, a chat, etc.). Built-in services are embedded
into the platform and are usually general-purpose facilities
offered to users and to other application services. The most
interesting typology of built-in service is represented by
medical device drivers. These are services used to access a
medical device (e.g., an electrocardiograph or a pulse
oximetry sensor) and are implemented by the various device
manufacturers to facilitate the monitoring and control of their
instruments.

The proposed system relies on a middleware built upon the
operating system, whose services are available to several
kinds of applications of the upper level (see Fig. 1). The
middleware layers offer both low and high level services
(discussed later), to grant dynamicity and context-awareness
features to the system. In the following Subsections, we will
examine one by one every layer of the UbiMedic
architecture, starting from the application services layer.

6. Application Service Layer

The possible applications that can benefit from the facilities
in the UbiMedic framework spread over a wide range of
medical emergencies support tools: from a resource explorer,
to textual and vocal chat, medical device interactions, on-map
location, shared agenda, data storage, logging, administration
tools, and so on. Application services are designed and
implemented separately from each others: they can be
installed as independent modules, progressively enriching the

system with new available functionalities. Furthermore, it is
by no means required that these software modules are agent-
based applications (e.g., they can be legacy Java
applications). The seamless integration of non agent-oriented
applications within an agent platform demanded the
conception of a proper service model.

Service

ChatServiceAgendaService

ServiceAgent

1 1

AGENT
SYSTEM

Fig. 2. The main classes of the applications.

An application service is composed of three entities (Fig. 2):
(i) the Service class, which exposes a public shared interface

for a generic UbiMedic application, like the ones listed
above;

(ii) an application specific class, extending the Service
superclass, which contains the code implementing the
particular functionalities of the application;

(iii) a Service Agent, univocally associated to each
instantiated service, which is the entity representing the
instance of the application in the agent platform; this
agent is responsible for invoking the service methods of
the application, acting as a mediator between the
application classes and the rest of the multi-agent system.

In practice, if a developer wants to add a new application
service, he has just to implement a class inheriting from
Service, specifying its own logic. As mentioned above, the
methods to interface the application class with the Service
Agent are exposed as a standard interface by the Service
class. As a consequence, each application is implemented as a
plain Java application, ideally without any knowledge of the
agent paradigm underneath. The advantage of this approach
is in the fact that all those tricky issues, related to the used
agent technology, are completely transparent to the user.

For example, we can list here a few essential application
services:
Resource Explorer: each user connecting to the system will

always start this service first. The application provides a
complete graphical view of all the connected resources
(users and devices). The view is personal, according to
user's profile and visibility permissions, and can be
organized in trees, grouping the identities on the base of
their typology. The Resource Explorer, through the
mediation of the Request Manager (see the next section),
must interrogate principally the Discovery service (see
later) to collect information about connected resources.

Chat: a real-time communication channel among connected
users. It can be textual, vocal or video, to meet all

coordination needs during an emergency. It can be
started selecting the receiver from the list shown by the
Resource Explorer.

The advantages of using an agent-based framework could be
clarified if we refer to the potentialities added to applications
thanks to the cooperative and proactivity properties of agents.
In fact, let us consider, for example, a patient needing an
emergency hospital admission: exploiting the agent social
ability, the system can collect information about hospitals and
means of transportation in that region and choose the best
destination hospital according to several deciding elements
(such as geographic distance, room and doctors availability,
instrument and medicine equipment). For instance, the
application could discover a helicopter approaching the
region, so that other farther hospitals could be automatically
taken into consideration for the best solution.

6.1.1 Medical Device Drivers: a Key UbiMedic Service

As already said, the interaction with a medical device is a
first-class built-in application service in UbiMedic. The
remote interaction with a medical device consists in
visualizing its measured values and, if possible, in sending
some requests to drive the device. Medical device drivers are
agent-based services implemented by manufactures according
to the general service model explained above. When a user
(e.g., a specialist doctor) wants to verify the vital signs
coming from a remote device, he has to ask the system for the
medical device service suitable for that specific device. The
distributed and unpredictable nature of remote device
monitoring makes convenient having a more distributed
implementation of the service than the centralized one. In
other words, we still have a generic Service Agent class
installed in UbiMedic, implementing many functionalities
useful for the application services (e.g., communication and
data logging facilities). Nonetheless, other important pieces
of the service logic are scattered across a set of three kinds of
agents instantiated for each device (see Fig. 3):
(i) a User Interface Agent (UIA) responsible for managing

user interactions, by means of a more or less complex
GUI (Graphical User Interface);

(ii) a Physical Resource Interface Agent (PRIA), which has
to collect and make available, to requesters all over the
platform, the patient's vital signs measured by medical
devices;

(iii) a Proxy Agent (PA) which includes the proper logic to
process and filter the collected data according to the
specific source/device and to the particular goals of the
application. This agent extends the Service Agent
exploiting its general purpose facilities for application
services.

Each time a user, through her graphical interface, wants to
interact with a medical device, a proxy agent is generated and
acts as a mediator between the two entities (i.e. the UIA and
the PRIA). Having a PA associated with the UIA relieves the
user’s device (maybe with limited resources) of the burden of
executing the bulk of the code, letting the system choose the
best location where to move and execute the PA, considering
the amount and type of needed resources.

For example, let us consider a first aid case study, where
an ambulance with some volunteers reaches the place of a car
accident: the caregivers start the detection of a patient's

electrocardiogram, which is automatically transmitted to
obtain some specialists' second opinion. The agent-based
system is able to choose the most efficient available
communication link, select all the actors that should be
involved to obtain a second opinion (e.g., the connected
cardiologist) and perform the data processing needed to send
them the electrocardiogram. In fact, a doctor must be
reachable even if he is moving with a limited device, like a
cellphone, needing a proper transcoding of the information
the device can't support by itself: a mobile PA comes in help
performing the data transcoding on a more capable node.
This way, we can achieve increased portability of user’s
applications on a wider range of computational devices.

RS CS TR RD TD CD
TALK / DATA

TALK

USER PHYSICAL RESOURCE

User Interface
Agent

Proxy Agent Physical
Resource
Interface

Agent

Fig. 3. The three agent typologies of a medical device
application service

6.2 The Middleware

The middleware is composed of three main layers, described
in the following. We chose to exploit existent and standard
technologies to reduce the implementation work, to grant
more flexibility and openness.
Just a layer upon the operating system, we have the Java
Virtual Machine (JVM) as the common execution
environment to deploy the same application on different
systems and platforms. It is the lowest layer of the
middleware and it helps achieving isolation from the
underlying hardware/OS. There are different JVMs that can
be installed and configured to run on resource-constrained
devices (such as the Java 2 Micro Edition), granting a good
degree of portability to the system.

A multi-agent platform provides all the facilities to
administrate a multi-agent system, ensuring the needed
supports for agent’s life-cycle, their interactions, coordination
and mobility. As already said, the agent paradigm can be the
best fit to model a complex system in a dynamic and
distributed environment, like healthcare and medical
emergency scenarios. The chosen platform, JADE [7], is a
FIPA-compliant framework, Java-based, providing some
useful services to implement inter-agent communication,
node UDP monitoring, security and fault-tolerance features.
The LEAP distribution enables FIPA agents to execute also
on lightweight devices, such as mobile phones or PDAs
running the JVM.

The proposed UbiMedic framework is a layer of the
middleware implementing context-awareness over the JADE
multi-agent platform. It is composed of several modules,
grouped into two main levels: low level services, which are
responsible for environment monitoring and the interactions

with it; high level services, implementing more sophisticated
and evolved functionalities, directly used by the application
layer. The UbiMedic framework is detailed in the next
section.

7. UbiMedic Framework

UbiMedic is an agent-based middleware, implemented on top
of JADE. Fig. 4 shows the low and high level services
composing the framework, detailed in the following
subsections. We anticipate that each module in the presented
architecture is implemented by means of one or more agents
(e.g., the Authorization Agent or the Session Factory Agent).
The scope of these agents will be clearer in Section 6.

Before diving into UbiMedic internal services, a few
words must be spent to explain our vision of the “context”
concept, because this will make the subsequent discussion
easier to understand. We found useful to distinguish between
session context and physical environment context: the former
refers to the situation of each identity in the system, its
preferences, authorizations and policies; the latter comprises
instead information about the surrounding environment, i.e.
device computational capabilities, connectivity and so forth.
Every change in both the context typologies triggers an event
that must be collected and efficiently delivered to the
interested agents in the system: this is exactly the
functionality of the vertical module Event Manager depicted
in Fig. 4 and discussed later.

C o re S erv ices

C o n tex t M a n ag em en t

Environment
Factory

Session
Factory

Authen-
tication

Authori-
zation

Discovery

Environment
Monitoring

Profiles

Policies

E ven t M an ag er

R eq u es t M an ag er

H
ig

h
Le

ve
l

S
er

vi
ce

s
Lo

w
 L

ev
el

Se
rv

ic
es

Fig. 4. The UbiMedic framework

7.1 Low Level Services

Low level facilities include six modules representing the core
services of the system:

Authentication. This module verifies the credentials of the
identities trying to access the system. By “identity” we mean
not only each password-enabled user, but also all the active
resources (e.g., medical devices) which connect to the
system. Since a user can access the system through different
devices, he must each time manually specify his credentials;
the medical device credentials are automatically exposed
instead by the corresponding Physical Resource Interface
Agent (PRIA), once properly preconfigured. The
Authentication module allows new connection requests if the
requesting identity has the right credentials, which are
maintained in a database, associated to each identity.

Authorization. It is the facility governing all the actions
that identities can perform after joining the platform.
Permissions and rules are stored in a database according to
the RBAC model [12], where multiple roles can be assigned
to each identity, and each role can be assigned multiple
permissions. The defined permissions regulate each possible
action, from resource access to agent social life. No action
can be performed without the acknowledgement of the
Authorization module. More details about the RBAC
implementation are discussed in Section 8.3.

Profiles. We call "profiles" all the generic parameters
defining some identities' preferences, such as user's
customization and device working parameters. The
corresponding core service, wrapped in the "profiles"
module, retrieves these fields once again from a database and
updates them, when any parameters of a preference are
modified.

Policies with the term "policy" we intend preconfigured
operations an identity must perform in response to some
trigger events happened in the environment. This module
allows the association of these actions to each identity in the
platform, in a similar way to permissions and profiles.

Discovery. This module monitors in real time the available
resources and the identities present in the system. Its aim is to
show a continuously updated vision of the environment
where the identities live. It acts as a mediator between the
connected identities, which have to register in and deregister
from the discovery module, and the below JADE directory
and yellow pages services. The Discovery module is able to
automatically perceive changes in the connected identities
and to start searching agents according to the identity’s
requirements and the registered features.

Environment monitoring. This is a monitoring service of
all the context features in the physical environments where
each identity is running. The physical environment can
dynamically change depending on the localization of a
medical device, its computational capabilities, the availability
of network access point and the occurring of some external
events. While the previous modules are mainly about context
session information, the Environment Monitoring deals with
the physical aspects of the context. Together they constitute
the primary information-collecting phase, at the base of
context-awareness implementation.

7.2 The Event Manager

This module collects all the context change notifications,
received from the application level and the other middleware
modules, and dispatches them to the interested entities The
Event Manager, differently from the other modules, can be
considered a vertical service because of its ability to interact
with both low and high middleware layers and application
services. To overcome the disadvantages related to the
centralization of this service (such as bottleneck and a lot of
traffic only for the notification transmission) the system can
be configured as a federation of Event Managers, each one
competent in a limited locality, achieving better system
scalability (see Section 1.1 for further design issues on this
topic).

7.3 High Level Services

High level facilities can be divided into context management
and request management. The Context Management layer
manages context information of each identity in the system
and defines the data structures to keep this information
updated. It is composed of two modules, reflecting the
context partition previously introduced:

Session factory. This module generates the necessary
objects to let identities access the system. As already said, by
session information we mean all those roles, permissions,
profiles and policies related to an identity. Whenever a user
or a resource attempt a connection to the system, the Session
Factory collects all session information provided by core
services (querying in particular the Authentication,
Authorization, Profiles and Policies agents) and assigns them
to a particular agent, called Context Agent (see Section 8.1
for more details), univocally associated with the new session
of the identity. The identity is represented hereafter in the
system by its Context Agent, containing all the context
information initially provided by the Session Factory and
kept updated through the interaction with the Event Manager.

Environment factory. This module collects all the physical
context information perceived by the low level Environment
Monitoring service and generates an Environment Context
Agent related to the particular location where an identity is
running. This agent encapsulates context information that are
location-dependent (each node has its own associated
Environment Context Agent): if the identity moves to a
different location, or the surrounding environment changes,
the Environment Factory transparently performs the
substitution of the old Environment Context Agent or it
updates its information.

The Request Manager is instead the layer that receives and
tries to satisfy the requests of the various identities to access
resources and functionalities. The identities have always to
contact the Request Manager before performing any action in
the system. Each request is analyzed and executed according
to the context state: the action is performed only if both the
physical context (e.g., availability of memory and bandwidth)
and the session information (e.g., permissions and profiles)
are consistent with its execution. The Request Manager
works in tight relationship with the Context Management
layer to know when to allow the received request. If allowed,
the requested resources or the execution results are returned
to the initial identity.

8. Context Management Details

UbiMedic requires context-awareness for the correct
execution of the applicative services. For example, the
framework must perceive if the bandwidth falls down to
timely switch the ECG transmissions in progress on a more
available communication channel; in addition, the framework
is expected to instantly discover and update the list of
connected identities, to let practitioners always be aware of
the human and physical available resources.

In the following subsections we focus on the UbiMedic
context management, showing in deeper details the existing
interactions among the involved agents and discussing some
distributed solutions to improve scalability. In particular we
will consider “authorization” as one of the aspect
representing a significant part of context information.

8.1 Context Generation and Update

As we noticed above, the services at the application level and
the identities that joined the platform (both human and
physical resources) must be informed of context changes. The
mentioned Context Agent is associated to each identity
accessing the system. The Context Agent is the entity
representing a person or a device in the agent platform: it
includes and keeps up to date all the context information of
the related identity, making them available to other
applications and identities requiring this kind of context
awareness. Let us consider a distributed application that has
to transfer data to a remote device: this application must be
aware of the context of the receiver device, e.g., it must be
aware of the data format understood by the receiver and of its
computational capabilities, in order to perform the necessary
transcoding before delivering the data.

The Context Agent is the contact agent to begin an
interaction with the person or the physical resource it is
related to. It provides all the information about the considered
identity gathered from the low level services locally running
on the node where the identity lives and from the centralized
services keeping its personal settings. When a new identity
joins the platform and its Context Agent is created, the
Environment Factory Agent and the Session Factory Agent
collect the needed information: in particular, the former
contacts the low level services providing information about

the local physical environment (transition number 1 in Fig.
5), and the latter interacts with those services in charge of
providing general parameters and permissions related to the
identity (transition 3 in Fig. 5). Both the agents send the
obtained information to the just created Context Agent
(transitions 2, 4). Since that moment, every change of these
information are notified to the Context Agent, which must
always be up to date. To this purpose, we introduced the
already quoted Event Manager: low level services always
notify any detected modification in their information domain
to the same Event Manager (transition number 5). The Event
Manager will forward the notifications to the interested
agents, like the Context Agents of the identities involved in
the context modifications and/or the application services
interacting with the same entities (transitions 6, 7). An a
priori registration to the Event Manager's notification service
is needed: each agent must contact the Event Manager to
specify the kinds of events it is interested in. The registration
can be done at instantiation time and successively updated
during all the agent life cycle. Similarly to the low level
services, also the applicative ones can notify context
modifications (e.g., the kind of currently active application
services for each identity): the context events are always sent
to the Event Manager (transition 8) and then delivered to the
proper receivers, both Context Agents and other application
services (transitions 9, 10).

Low
Middleware

Services

Application Services

Low
Middleware

Services

Application Services

Context
Agent

-creation-

Event
Manager

Context
Agent

-update-

state

notific
ation

state
notification

changenotification

change
notification

forward notification

forward notification

forward

notification

forward

notific
ation

state delivery

state delivery

sorting

sorting

1

3

2

4

6

5 9

10

8

7

Environment
Factory
Agent

Session
Factory
Agent

Context
Agent

-creation-

Context
Agent

-update-

Fig. 5. General context management representation.

8.2 Event Management Issues

As just noticed, the Event Manager waits for subscription
requests coming from all the agents interested in the context
changes, receives all the context event messages in the whole
platform and delivers them to the proper subscribed agents. If
this centralized solution makes the event management easier
to develop (for the logical separation of event detection from

routing and message delivery), on the other hand it would
likely be inefficient because of the huge amount of traffic
generated by the events inevitably produced in dynamic
contexts, like the emergency ones. Alternatively, a fully
distributed solution would mean a relevant increase of the
system complexity, for the intelligence each low middleware
service should have to deliver their notifications in a sort of
“network of scattered event managers”. Besides, the identity

subscriptions for context change notifications should be
replicated for each service and node, with additional resource
consumption and consistency issues.

An intermediate solution based on local areas is proposed,
combining the two approaches: the event management is
decentralized in local areas, inside which a Local Event
Manager has a centralized behavior analogue to the
previously described one. Instead of a single Event Manager
in the system, there can be several Local Event Managers,
one for each identified local area (Fig. 6). First of all, the
system must be divided in such local areas: they can be
localized after analyzing the traffic generated from the
context event notifications. The system administrator must
then apply the best criteria (depending on the nature of the
organizations adopting the system, with their own
administrative rules and functional dependences among the
actors) and try to optimize the area definitions, minimizing
inter-areas communications. In other words, each area should
group all the entities interested in the context changes
regarding their own area. Each agent subscribes only to the
Local Event Manager of its area and the generated
notification traffic is mostly confined within such area.
Whenever an identity needs notifications about the context of
another local area (e.g., if an application service agent is
communicating with an agent belonging to a different area,
sending vital signs data for a second opinion by a remote
doctor), it must still send the subscription request to his Local
Event Manager, which will forward the request to the Local
Event Manager of the interested area. When the second Event
Manager detects a context change for which it received the
subscription, it delivers the message directly to the interested
identity in the first local area: this is the only inter-areas
communication due to the context management the
administrator must minimize with the most suitable area
identification.

Local Area

Local Event
Manager

Local Area

Local Event
Manager

Fig. 6. Distributed solution for the Event Manager
implementation.

A suitable implementation of this hybrid approach can be

developed on the JADE framework, through the creation of
multiple agent platforms, where each one fits a single local
area. A single Local Event Manager lives in every platform
and is responsible for keeping in touch with the adjacent
Local Event Managers living in other platforms. New

autonomous platforms can be increasingly added to
UbiMedic, making the whole system more scalable.

Besides, this multiple platform solution fulfills also the
autonomy requirement of the different organizations adopting
the system, often very heterogeneous from each others. In
fact, considering that different independent organizations can
participate in the same emergency scenario (e.g., health care
system and fire brigade), they could hardly accept to share
the same platform regardless of their own internal rules and
administration. In our agent perspective [2], each
organization is free to define its internal business rules and
agent responsibilities, including the preferred authorization
system. These platforms can implement their own centralized
services, without excluding the possibility of interaction
between them, by means of inter-platform communication.
Therefore, the coordination among the different organizations
involved in the emergency care is allowed, though preserving
their autonomy.

8.3 The Authorization Control

Authorization constitutes an important part of the contextual
information to control the several actors in the platform. As
pointed out in Section 7.1 an RBAC approach [12] is
proposed, for the flexibility of adopting roles with
permissions associated to the system identities. In the
standard RBAC model there are two many-to-many
relationships: between identities and roles and, on the other
hand, between roles and permissions (Fig. 7 (a)). UbiMedic,
instead, adopts a slightly modified version, where the second
many-to-many relationship is replaced by a one-to-one
relationship between roles and a new entity named Access
Policy (Fig. 7 (b)).

IDENTITY PERMISSIONROLE

n n n n

IDENTITY ROLE

n n 1 1

ACCESS POLICY

permission1
permission2
........
permissionN

Specific
 language
 statements

(a)

(b)

Fig. 7. The standard RBAC model (a) and the UbiMedic
implementation (b).

Such an implementation offers the possibility of better
expressing permissions in the form of more complex rules
using suitable declarative languages, such as Ponder [11] or
Drools [4]. This requires the adoption of some related parsers
and interpreters to integrate these languages in the system.

The authorization data are stored in a centralized database
and the Authorization Agent is the only delegated to access
and deliver the permissions on request. It provides the
administration utilities for the permission update and answers
to other agents requests. However, both for safety reasons
and for a coherent separation of concerns among the
middleware levels, the single agents can't directly access the
authorization module, but an intermediate component is
always involved. When a Context Agent is created (as

described in the previous Section) the already quoted Session
Factory Agent is the responsible for collecting all the
required session information for the identity, including the
proper permissions (

Fig. 8 (a)). Now the identities' authorization data can be
stored in their own Context Agent. For any subsequent
authorization request (

Fig. 8 (b)), each identity and application service can
interact with other agents through the intercession of the
Request Manager Agent and access the permission rules
stored in the Context Agents to contact.

9. Critical Evaluation and Future Challenges

Throughout this paper, the architecture of the UbiMedic
platform has been outlined, while in this final section we will
evaluate the different peculiarities of this framework,
compared to the related work.

Fig. 8. Agent relations in retrieving authorization data.

Most healthcare systems are focused on some particular
application scenarios: e.g., LIFENET provides cardiac
emergency services, ILSA deals with monitoring of elderly
people, etc. UbiMedic is proposed as a general medical
emergency platform, to be installed in hospitals, ambulances
and other healthcare organizations. In addition, even though
UbiMedic has been designed for medical purposes, it is
suitable to a wide range of different applications: it can be
used in any field requiring a pervasive, dynamic and context-
aware system. It has already been stressed the key
importance of giving applications an up-to-date view of the
situation around them, so that they can take intelligent and
informed actions. Situational data are captured by
environment-embedded sensors and other mobile devices and
are stored in the described Context Agents, available to other
entities in the platform.

Thanks to its generality, UbiMedic can offer the

programmer the power of mobile agents, even without
requiring an agent-based design. There are, in fact, many
applications that would greatly benefit from an agent-oriented
design, in particular those applications where several
distributed components have to cooperate towards the
achievement of a common goal (e.g., several agents
collaborating to find the shortest path to a certain hospital).
However, other applications (legacy applications, in
particular) do not need the complexity of agents at design-
time, although this does not imply that they cannot participate
in a MAS: thanks to the Service Agent intermediation, they
interact with other services exchanging ACL (Agent
Communication Language) messages and are thus fully
integrated in the agent platform. The adopted service model
has therefore the potential to overcome most of the
difficulties that many agent proposals run into (refer to the
ILSA project quoted in Section 3).

The other outstanding asset of UbiMedic is its extensible
support for heterogeneous medical devices, which is by no
means the case of the analyzed related work: in these systems
the management is hardwired into the platform and can only
cope with certain special medical devices (e.g., the Lifepak
12 presented in Section 3). This represents a heavy limitation
for the organizations that have to adopt such systems,
because they cannot fully exploit their existent
instrumentation. The UbiMedic approach to the device
integration problem, by means of the three agents described
in Section 6.1.1, allows first device manufactures and then
programmers to easily integrated their products and make
them accessible throughout the distributed platform.
Furthermore, even more resource-constrained devices are
supported, thanks to the adaptivity and mobility features of
the PRIA agent of Section 6.1.1.

Apart from these relevant benefits, there are some other
practical issues that have still to be addressed and some
problems have to be solved before UbiMedic or a similar
middleware could really be used in healthcare commercial
applications. Some issues are strictly related to the adopted
agent technology [14], while others are more general and
inherent to the real world of the application field [9]. An
overview of many of these future challenges is given in the
following subsections.

9.1 Security

First of all, security is a very important matter: it is a
fundamental issue, concerning both information
confidentiality and authorized operations. Many of medical
information are subject to privacy protection; they often
cannot be made public to other people except those directly
involved. On the other hand, the requested tasks during a
medical and territorial emergency are very delicate and imply
high responsibilities. The middleware technology must grant
a secure implementation for accessing the information and
avoiding unauthorized actions. While inter-agent
communications can be encrypted to save confidentiality, the
authentication of mobile and autonomous agents could be
more difficult. Furthermore, both the agents and the nodes
where they are running have to protect themselves, the
former against malicious nodes, and the latter against
malicious agents [14]. Both the entities, in fact, could
potentially try to attack respectively the node to exploit or

damage its resources and the agent to take out its secrets.
New technological solutions would be very useful in security
issues, but on the other hand a possible way to partially face
the problem could be to communicate each sensible piece of
information between the agent and a central secure repository
node, so that the agent carries no secret information during
the migration.

9.2 Communication Standards and Common Ontologies

A system able to integrate different sources and applications
has to exploit open and shared protocols. On the other hand,
medical devices and other applications should as well be
compliant with these protocols so as to be integrated into the
system. But both devices and existing medical applications
are often closed and proprietary solutions. These topics have
been further analyzed in [3], where the concept of roles has
been proposed as a concrete solution to the device integration
problem and to its commercial implications.

Moreover, shared communication standards and complete
common medical ontologies, indispensable to achieve
effective integration and portability, are not used or do not
exist at present.

9.3 Legal Conformity

All healthcare activities are strictly regulated by laws and
professional rules, which can differ on the base of local,
national and international regulations. Besides, specific rules
are defined for electronically conducted activities in
substitution of traditional non-technological procedures. In
particular, a multi-agent system, under an agent form, can
represent official organizations and legal entities cooperating
to reach some common goals. All these individuals have to
respect some laws and deontological rules, which have to be
reflected in the multi-agent system. Finally, many other
regulations will be formalized in the future, with the adoption
and diffusion of such systems.

9.4 Social and Professional Acceptance

Doctors and other health-care professionals run often into
difficulties when new technological solutions are proposed to
support their work. It can be hard for people used to work in
a traditional or simply different way to adapt themselves to
new methodologies, especially if they have no much time to
care about these technology aspects. For these reasons, a
system supporting medical emergencies must be very
practical and user-friendly. But even if this requirement is
satisfied, such a pervasive system has to face users'
suspiciousness. In fact, both professionals and patients could
not just feel safe entrusting their work and confidential
information to new technologies.

10. Conclusions and Future Work

In this paper, we have discussed some of the major
challenges arising from the application of the software agent
paradigm to the healthcare environment, with a focus on
medical emergency situations. We found that this paradigm
can sometimes reveal itself complex and hard to exploit, but
it is capable of offering, nevertheless, powerful features that

make it perhaps the ideal fit in this context.
Therefore, we propose the adoption of a middleware, built

on top of the JADE platform, in which medical devices,
doctors and ambulances interact by means of their
representative agents running and interacting in the
distributed platform. Even if the presented framework is still
a work in progress, we have envisioned the advantages of
agent oriented programming in the emergency domain.
Unlike traditional paradigms, agents exhibit the property of
being autonomous and interactive and, coupled with
mobility, they are capable of performing dynamic and
intelligent inference tasks during their execution. Adopting a
framework based on the software agent paradigm, we can
achieve a higher degree of flexibility by allowing
applications to dynamically adapt to the changing demands of
their execution environments. Application services are,
instead, unaware of the agent platform and can be easily
deployed as plain Java code, without having to manage all the
complex details of agent-hood.

The system development started with the implementation
of the lowest services of the UbiMedic framework; they still
need to be further detailed in the future, together with a more
complete analysis of the other middleware modules. The
whole framework will be tested step by step to validate the
architectural choices and to identify possible single points of
failure.

Acknowledgements

Work supported by the European Community within the EU
FET project "CASCADAS".

References

[1] P Bellavista, D Bottazzi, A Corradi and R Montanari,

Challenges, opportunities and solutions for ubiquitous
eldercare. DEIS University of Bologna Technical Report,
October 2005.

[2] G Cabri, F De Mola and R Quitadamo, Supporting a
territorial emergency scenario with Services and Agents:
a case study comparison. Proceeding of ACEC, WETICE
2006, Manchester, June 2006 (To appear).

[3] G Cabri, F De Mola, R Quitadamo and F Zambonelli,
Agent-based integration of medical devices for
monitoring purposes. Proceeding of the 4th Workshop of
Agent Applied in Health Care, ECAI’06, Riva del Garda,
Italy, August 2006 (To appear).

[4] Drools, Open Source project by Bob McWhirter, hosted
at The Codehaus http://www.drools.org

[5] A Fuggetta, G P Picco and G Vigna, Understanding code
mobility. IEEE Transactions on Software Engineering,
Vol. 24, no. 5, May 1998, pp. 342-362.

[6] K Z Haigh, L M Kiff, J Myers, V Guralnik, C W Geib, J
Phelps and T Wagner, The independent lifestyle assistant
(I.L.S.A.): AI lessons learned. The 16th Innovative
Applications of Artificial Intelligence Conference
(IAAI’04), San Jose, CA., July 2004, pp. 852-857.

[7] JADE, Java Agents Development Framework, TILAB,
Torino, http://jade.tilab.com

[8] Medtronic Physio-Control, http://www.medtronic-
ers.com

[9] J Nealon and A Moreno, Agent-based applications in

health care. In: Applications of Software Agent
Technology in the Health Care Domain, Whitestein
Series in Software Agent Technologies, Birkhäuser
Verlag, Basel, Germany, pp. 3-18.

[10] A Padovitz, S W Loke, A Zaslavsky and B Burg,
Towards a general approach for reasoning about context,
situations and uncertainty in ubiquitous sensing: Putting
geometrical intuitions to work. 2nd International
Symposium on Ubiquitous Computing Systems
(UCS'04), Tokyo, Japan, 2004.

[11] PONDER, Policy Language for Distributed Systems
Management Policy, Research Group, Department of
Computing, Imperial College, London, http://www-
dse.doc.ic.ac.uk/Research/policies/ponder.shtml

[12] RBAC, Role-based access control. NIST, National
Institute of Standards and Technology,
http://csrc.nist.gov/rbac

[13] V Shnayder, B Chen, K Lorincz, T R F Fulford-Jones
and M Welsh, Sensor networks for medical care.
Technical Report TR-08-05, Division of Engineering and
Applied Sciences, Harvard University, 2005.

[14] G Vigna, Mobile Agents: Ten reasons for failure.
Proceedings of the 2004 IEEE International Conference
on Mobile Data Management (MDM’04), Berkeley,
California, USA, January 2004, pp. 298-299.

Author Bios

Francesco De Mola is a PhD student in Information and
Communication Technologies at the University of Modena
and Reggio Emilia (Italy). He received the Laurea degree in
Computer Engineering from the same University in 2005. His
research interests include agent applications in ambient
intelligence and telemedicine scenarios.

Giacomo Cabri is an assistant professor in Computer
Science at the University of Modena and Reggio Emilia,
Italy. He received the Laurea degree in Computer

Engineering from the University of Bologna in 1995, and the
PhD in Computer Science from the University of Modena
and Reggio Emilia in 2000. His affiliation is the Department
of Information Engineering at Modena. His research interests
include methodologies, tools and environments for agents
and mobile computing, wide-scale network applications, and
object-oriented programming.

Nicola Muratori is a consultant at O2Studio Ingegneri
Associati in Albinea (Reggio Emilia, Italy). He received the
Laurea degree in Computer Engineering from the University
of Parma in 2000. His works experiences include distributed
applications in financial and commercial environments. His
research interests include agent applications in telemedicine
scenarios.

Raffaele Quitadamo is a PhD Student in Computer
Science at the University of Modena and Reggio Emilia. He
received the Laurea degree in Computer Engineering from
the University of Bologna in 2004. His affiliation is the
Department of Information Engineering at Modena (Italy).
His research interests include technologies and infrastructures
for mobile and pervasive computing, service-oriented
computing and autonomic communications.

Franco Zambonelli is an associate professor in Computer
Science at the University of Modena and Reggio Emilia,
since 2001. He obtained the Laurea degree in Electronic
Engineering in 1992, and the PhD in Computer Science in
1997, both from the University of Bologna. In 1996, he
obtained a fellowship to do research activity in distributed
systems at the Brown University (Rhode Island, USA). In
1999, he has been visiting researcher at the University of
Southampton (UK), where he has done research activity in
the area of intelligent agents. His current affiliation is the
Department of Engineering Methods and Science at Reggio
Emilia. His current research interests include: middleware for
mobile and embedded systems, agents and mobile agents
technologies, agent-oriented software engineering.

